Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/189975
Title: The consistency of the negation of the Continuum Hypothesis
Author: Fernàndez Dejean, Anton
Director/Tutor: Martínez Alonso, Juan Carlos
Keywords: Teoria de conjunts
Treballs de fi de grau
Lògica matemàtica
Forcing (Teoria de models)
Set theory
Bachelor's theses
Mathematical logic
Forcing (Model theory)
Issue Date: 13-Jun-2022
Abstract: [en] The purpose of this work is to prove the consistency of the negation of the Continuum Hypothesis $(\mathrm{CH})$ with the Zermelo - Fraenkel axiomatic system, including the Axiom of Choice (ZFC). The Continuum Hypothesis states that there is no set whose cardinality is strictly between the cardinality of the set of integers and the cardinality of the set of real numbers. It is well-known that $C H$ is independent of ZFC: neither $C H$ nor its negation can be proved from ZFC. In order to show the consistency of $\neg C H$, we will use the method of forcing that permits us to construct a model that satisfies all the axioms of $Z F C$ and where $C H$ fails.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Juan Carlos Martínez Alonso
URI: https://hdl.handle.net/2445/189975
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_fernandez_dejean_anton.pdfMemòria538.48 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons