Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/190353
Title: H4K5 butyrylation coexist with acetylation during human spermiogenesis and are retained in the mature sperm chromatin
Author: de la Iglesia Rodriguez, Alberto
Jauregi, Paula
Jodar Bifet, Meritxell
Barrachina, Ferran
Ded, Lukas
Mallofré i Gómez, Carme
Rodríguez-Carunchio, Leonardo
Corral, Juan Manuel
Ballescà, Josep Lluís
Komrskova, Katerina
Castillo Corullón, Judit
Oliva Virgili, Rafael
Keywords: Espermatozoides
Espermatogènesi
Cromatina
Spermatozoa
Spermatogenesis
Chromatin
Issue Date: 17-Oct-2022
Publisher: MDPI
Abstract: Male germ cells experience a drastic chromatin remodeling through the nucleo-histone to nucleo-protamine (NH-NP) transition necessary for proper sperm functionality. Post-translational modifications (PTMs) of H4 Lys5, such as acetylation (H4K5ac), play a crucial role in epigenetic control of nucleosome disassembly facilitating protamine incorporation into paternal DNA. It has been shown that butyrylation on the same residue (H4K5bu) participates in temporal regulation of NH-NP transition in mice, delaying the bromodomain testis specific protein (BRDT)-dependent nucleosome disassembly and potentially marking retained nucleosomes. However, no information was available so far on this modification in human sperm. Here, we report a dual behavior of H4K5bu and H4K5ac in human normal spermatogenesis, suggesting a specific role of H4K5bu during spermatid elongation, coexisting with H4K5ac although with different starting points. This pattern is stable under different testicular pathologies, suggesting a highly conserved function of these modifications. Despite a drastic decrease of both PTMs in condensed spermatids, they are retained in ejaculated sperm, with 30% of non-colocalizing nucleosome clusters, which could reflect differential paternal genome retention. Whereas no apparent effect of these PTMs was observed associated with sperm quality, their presence in mature sperm could entail a potential role in the zygote.
Note: Reproducció del document publicat a: https://doi.org/10.3390/ijms232012398
It is part of: International Journal of Molecular Sciences, 2022, vol. 23, num. 20 (12398), p. 1-18
URI: https://hdl.handle.net/2445/190353
Related resource: https://doi.org/10.3390/ijms232012398
ISSN: 1661-6596
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Biomedicina)

Files in This Item:
File Description SizeFormat 
725939.pdf3.71 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons