Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/190458| Title: | On the dimension of Voisin sets in the moduli space of abelian varieties |
| Author: | Colombo, E. Naranjo del Val, Juan Carlos Pirola, Gian Pietro |
| Keywords: | Varietats abelianes Geometria algebraica Cicles algebraics Abelian varieties Algebraic geometry Algebraic cycles |
| Issue Date: | 12-Jan-2021 |
| Publisher: | Springer Verlag |
| Abstract: | We study the subsets $V_k(A)$ of a complex abelian variety $A$ consisting in the collection of points $x \in A$ such that the zero-cycle $\{x\}-\left\{0_A\right\}$ is $k$-nilpotent with respect to the Pontryagin product in the Chow group. These sets were introduced recently by Voisin and she showed that $\operatorname{dim} V_k(A) \leq k-1$ and $\operatorname{dim} V_k(A)$ is countable for a very general abelian variety of dimension at least $2 k-1$. We study in particular the locus $\mathcal{V}_{g, 2}$ in the moduli space of abelian varieties of dimension $g$ with a fixed polarization, where $V_2(A)$ is positive dimensional. We prove that an irreducible subvariety $\mathcal{Y} \subset \mathcal{V}_{g, 2}$, $g \geq 3$, such that for a very general $y \in \mathcal{Y}$ there is a curve in $V_2\left(A_y\right)$ generating $A$ satisfies $\operatorname{dim} \mathcal{Y} \leq 2 g-1$. The hyperelliptic locus shows that this bound is sharp. |
| Note: | Reproducció del document publicat a: https://doi.org/10.1007/s00208-020-02134-x |
| It is part of: | Mathematische Annalen, 2021, vol. 381, p. 91-104 |
| URI: | https://hdl.handle.net/2445/190458 |
| Related resource: | https://doi.org/10.1007/s00208-020-02134-x |
| ISSN: | 0025-5831 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 705384.pdf | 260.25 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
