Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/190480
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVidal-Llana, Xenxo-
dc.contributor.authorSalort Sánchez, Carlos-
dc.contributor.authorCoia, Vincenzo-
dc.contributor.authorGuillén, Montserrat-
dc.date.accessioned2022-11-04T13:10:06Z-
dc.date.available2022-11-04T13:10:06Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/2445/190480-
dc.description.abstractWhen datasets present long conditional tails on their response variables, algorithms based on Quantile Regression have been widely used to assess extreme quantile behaviors. Value at Risk (VaR) and Conditional Tail Expectation (CTE) allow the evaluation of extreme events to be easily interpretable. The state-of-the-art methodologies to estimate VaR and CTE controlled by covariates are mainly based on linear quantile regression, and usually do not have in consideration non-crossing conditions across VaRs and their associated CTEs. We implement a non-crossing neural network that estimates both statistics simultaneously, for several quantile levels and ensuring a list of non-crossing conditions. We illustrate our method with a household energy consumption dataset from 2015 for quantile levels 0.9, 0.925, 0.95, 0.975 and 0.99, and show its improvements against a Monotone Composite Quantile Regression Neural Network approximation.ca
dc.format.extent22 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherUniversitat de Barcelona. Facultat d'Economia i Empresaca
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2022/202215.pdf-
dc.relation.ispartofIREA – Working Papers, 2022, IR22/15-
dc.relation.ispartofseries[WP E-IR22/15]ca
dc.rightscc-by-nc-nd, (c) Vidal-Llana et al., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationAvaluació del risc-
dc.subject.classificationAnàlisi de regressió-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherRisk assessment-
dc.subject.otherRegression analysis-
dc.titleNon-Crossing Dual Neural Network: Joint Value at Risk and Conditional Tail Expectation estimations with non-crossing conditionsca
dc.typeinfo:eu-repo/semantics/workingPaperca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Documents de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))

Files in This Item:
File Description SizeFormat 
IR22_015_Vidal Llana et al.pdf1.97 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons