Please use this identifier to cite or link to this item:
                
    
    https://hdl.handle.net/2445/190527| Title: | On the strong convergence of multiple ordinary integrals to multiple Stratonovich integrals | 
| Author: | Bardina i Simorra, Xavier Rovira Escofet, Carles | 
| Keywords: | Processos gaussians Teoremes de límit (Teoria de probabilitats) Integrals estocàstiques Gaussian processes Limit theorems (Probability theory) Stochastic integrals | 
| Issue Date: | 2021 | 
| Publisher: | Universitat Autònoma de Barcelona | 
| Abstract: | Given $\left\{W^{(m)}(t), t \in[0, T]\right\}_{m \geq 1}$, a sequence of approximations to a standard Brownian motion $W$ in $[0, T]$ such that $W^{(m)}(t)$ converges almost surely to $W(t)$, we show that, under regular conditions on the approximations, the multiple ordinary integrals with respect to $d W^{(m)}$ converge to the multiple Stratonovich integral. We are integrating functions of the type $$ f\left(t_1, \ldots, t_n\right)=f_1\left(t_1\right) \cdots f_n\left(t_n\right) I_{\left\{t_1 \leq \cdots \leq t_n\right\}}, $$ where for each $i \in\{1, \ldots, n\}, f_i$ has continuous derivatives in $[0, T]$. We apply this result to approximations obtained from uniform transport processes. | 
| Note: | Reproducció del document publicat a: https://doi.org/10.5565/PUBLMAT6522114 | 
| It is part of: | Publicacions Matemàtiques, 2021, vol. 65, num. 2, p. 859-876 | 
| URI: | https://hdl.handle.net/2445/190527 | 
| Related resource: | https://doi.org/10.5565/PUBLMAT6522114 | 
| ISSN: | 0214-1493 | 
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) | 
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 708072.pdf | 338.22 kB | Adobe PDF | View/Open | 
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
 
	 
	