Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/191026
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDíaz, Oliver-
dc.contributor.authorArranz Sánchez, Carlos-
dc.date.accessioned2022-11-22T10:36:25Z-
dc.date.available2022-11-22T10:36:25Z-
dc.date.issued2022-06-12-
dc.identifier.urihttps://hdl.handle.net/2445/191026-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Oliver Díazca
dc.description.abstract[en] Currently, multiple machine learning models have been implemented to assist radiology staff in the decision-making process during the analysis of medical images for cancerous lesions, both benign and malignant. Despite this, such models mostly cannot be trained with sufficient images, due to the ethical and legal complications in obtaining the images. For this purpose, the objective of this study has been defined as the implementation of a deep learning model system, more specifically a Progressively Growing GAN, by means of which two-dimensional medical images of breast MRIs can be generated from a set of other two-dimensional medical images that were provided by the Consorci Corporació Sanitària Parc Taulí. Despite the lack of radiological knowledge and computational capacity, the results of the model can be seen as satisfactory, because the structure of the breasts is preserved, together with an approximation of the breast tissues. However, if these images are intended to be used in another project, the model should be trained on a machine with higher computational capacity by which the model can be trained for a longer time.ca
dc.format.extent62 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightsmemòria: cc-nc-nd (c) Carlos Arranz Sánchez, 2022-
dc.rightscodi: GPL (c) Carlos Arranz Sánchez, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationImatges mèdiquesca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationImatges per ressonància magnèticaca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.otherMachine learningen
dc.subject.otherImaging systems in medicineen
dc.subject.otherComputer softwareen
dc.subject.otherMagnetic resonance imagingen
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherBachelor's thesesen
dc.titleProGAN per a la generació de ressonància magnètica de mamaca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
codi.zipCodi font35.25 MBzipView/Open
tfg_carlos_arranz_sanchez.pdfMemòria1.97 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons