Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/191843
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhada, Wael-
dc.contributor.authorCasellas, Enric-
dc.contributor.authorHerbinger, Julia-
dc.contributor.authorGarcia Benadi, Albert-
dc.contributor.authorBothmann, Ludwig-
dc.contributor.authorEstrella, Nicole-
dc.contributor.authorBech, Joan-
dc.contributor.authorMenzel, Annette-
dc.date.accessioned2022-12-23T18:03:18Z-
dc.date.available2022-12-23T18:03:18Z-
dc.date.issued2022-
dc.identifier.issn2072-4292-
dc.identifier.urihttp://hdl.handle.net/2445/191843-
dc.description.abstractRain type classification into convective and stratiform is an essential step required to improve quantitative precipitation estimations by remote sensing instruments. Previous studies with Micro Rain Radar (MRR) measurements and subjective rules have been performed to classify rain events. However, automating this process by using machine learning (ML) models provides the advantages of fast and reliable classification with the possibility to classify rain minute by minute. A total of 20,979 min of rain data measured by an MRR at Das in northeast Spain were used to build seven types of ML models for stratiform and convective rain type classification. The proposed classification models use a set of 22 parameters that summarize the reflectivity, the Doppler velocity, and the spectral width (SW) above and below the so-called separation level (SL). This level is defined as the level with the highest increase in Doppler velocity and corresponds with the bright band in stratiform rain. A pre-classification of the rain type for each minute based on the rain microstructure provided by the collocated disdrometer was performed. Our results indicate that complex ML models, particularly tree-based ensembles such as xgboost and random forest which capture the interactions of different features, perform better than simpler models. Applying methods from the field of interpretable ML, we identified reflectivity at the lowest layer and the average spectral width in the layers below SL as the most important features. High reflectivity and low SW values indicate a higher probability of convective rain.-
dc.format.extent23 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/rs14184563-
dc.relation.ispartofRemote Sensing, 2022, vol. 14, num. 18, p. 1-23-
dc.relation.urihttps://doi.org/10.3390/rs14184563-
dc.rightscc-by (c) Ghada, Wael et al., 2022-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Física Aplicada)-
dc.subject.classificationTemps (Meteorologia)-
dc.subject.classificationRadar-
dc.subject.classificationAprenentatge automàtic-
dc.subject.otherWeather-
dc.subject.otherRadar-
dc.subject.otherMachine learning-
dc.titleStratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec725870-
dc.date.updated2022-12-23T18:03:18Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física Aplicada)

Files in This Item:
File Description SizeFormat 
725870.pdf5.56 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons