Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/191946| Title: | Global Prym-Torelli for double coverings ramified in at least 6 points |
| Author: | Naranjo del Val, Juan Carlos Ortega, Angela |
| Keywords: | Corbes algebraiques Geometria algebraica Algebraic curves Algebraic geometry |
| Issue Date: | 2022 |
| Publisher: | University Press Inc. |
| Abstract: | We prove that the ramified Prym map $\mathcal{P}_{g, r}$ which sends a covering $\pi: D \longrightarrow C$ ramified in $r$ points to the Prym variety $P(\pi):=\operatorname{Ker}\left(N m_\pi\right)$ is an embedding for all $r \geq 6$ and for all $g(C)>0$. Moreover, by studying the restriction to the locus of coverings of hyperelliptic curves, we show that $\mathcal{P}_{g, 2}$ and $\mathcal{P}_{g, 4}$ have positive dimensional fibers. |
| Note: | Versió postprint del document publicat a: https://doi.org/10.1090/jag/779 |
| It is part of: | Journal of Algebraic Geometry, 2022, vol. 31, num. 2, p. 387-396 |
| URI: | https://hdl.handle.net/2445/191946 |
| Related resource: | https://doi.org/10.1090/jag/779 |
| ISSN: | 1056-3911 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 705025.pdf | 149.92 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
