Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/192069
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuriñach, Aristarc-
dc.contributor.authorHospital Gasch, Adam-
dc.contributor.authorWestermaier, Yvonne-
dc.contributor.authorJordà Bordoy, Luis-
dc.contributor.authorOrozco Ruiz, Sergi-
dc.contributor.authorBeltrán, Daniel-
dc.contributor.authorColizzi, Francesco-
dc.contributor.authorAndrio, Pau-
dc.contributor.authorSoliva, Robert-
dc.contributor.authorMunicoy, Martí-
dc.contributor.authorGelpi Buchaca, Josep Lluís-
dc.contributor.authorOrozco López, Modesto-
dc.date.accessioned2023-01-11T13:45:35Z-
dc.date.available2023-12-28T06:10:21Z-
dc.date.issued2022-12-28-
dc.identifier.issn1549-9596-
dc.identifier.urihttps://hdl.handle.net/2445/192069-
dc.description.abstractMutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.ca
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherAmerican Chemical Societyca
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jcim.2c01344-
dc.relation.ispartofJournal of Chemical Information and Modeling, 2023, Vol. 63, num. 1, p. 321-334-
dc.relation.urihttps://doi.org/10.1021/acs.jcim.2c01344-
dc.rights(c) American Chemical Society, 2022-
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)-
dc.subject.classificationResistència als medicaments-
dc.subject.classificationCàncer-
dc.subject.classificationQuimioteràpia-
dc.subject.classificationGenètica-
dc.subject.otherDrug resistance-
dc.subject.otherCancer-
dc.subject.otherChemotherapy-
dc.subject.otherGenetics-
dc.titleHigh-Throughput Prediction of the Impact of Genetic Variability on Drug Sensitivity and Resistance Patterns for Clinically Relevant Epidermal Growth Factor Receptor Mutations from Atomistic Simulationsca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.date.updated2023-01-10T15:57:20Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6573154-
dc.identifier.pmid36576351-
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)
Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.