Please use this identifier to cite or link to this item:
Title: Achievable connectivities of Fatou components for a family of singular perturbations
Author: Canela Sánchez, Jordi
Jarque i Ribera, Xavier
Paraschiv, Dan
Keywords: Sistemes dinàmics complexos
Pertorbacions singulars (Matemàtica)
Funcions meromorfes
Funcions de variables complexes
Complex dynamical systems
Singular perturbations (Mathematics)
Meromorphic functions
Functions of complex variables
Issue Date: Aug-2022
Publisher: American Institute of Mathematical Sciences (AIMS)
Abstract: In this paper we study the connectivity of Fatou components for maps in a large family of singular perturbations. We prove that, for some parameters inside the family, the dynamical planes for the corresponding maps present Fatou components of arbitrarily large connectivity and we determine precisely these connectivities. In particular, these results extend the ones obtained in [5,6].
Note: Versió postprint del document publicat a:
It is part of: Discrete and Continuous Dynamical Systems-Series A, 2022, vol. 42, num. 9, p. 4237-4261
Related resource:
ISSN: 1078-0947
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
727871.pdf1.59 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.