Please use this identifier to cite or link to this item:
Title: Veritats aritmètiques indemostrables en l'aritmètica de Peano
Author: Pastó Pellicer, Paula
Director/Tutor: Bagaria, Joan
Keywords: Decidibilitat (Lògica matemàtica)
Treballs de fi de grau
Teoria axiomàtica de conjunts
Teoria de la prova
Història de la matemàtica
Decidability (Mathematical logic)
Bachelor's theses
Axiomatic set theory
Proof theory
History of mathematics
Issue Date: 13-Jun-2022
Abstract: [en] Peano’s arithmetic is given by a set of axioms that express the basic properties and operations of natural numbers. This paper introduces the basics of this theory and studies the undecidability of certain results in it. To do so, it focuses on the Hydra and Hercules theorem, and on Goodstein’s theorem.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Joan Bagaria
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_pasto_pellicer_paula.pdfMemòria903.85 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons