Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/192304
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cabrero Daniel, Beatriz | - |
dc.contributor.author | Rodrigues Sepúlveda Marques, Ricardo Jorge | - |
dc.contributor.author | Hoyet, Ludovic | - |
dc.contributor.author | Pettré, Juliene | - |
dc.contributor.author | Blat Gimeno, Josep | - |
dc.date.accessioned | 2023-01-18T10:31:42Z | - |
dc.date.available | 2023-05-24T05:10:25Z | - |
dc.date.issued | 2022-05-24 | - |
dc.identifier.issn | 0167-7055 | - |
dc.identifier.uri | https://hdl.handle.net/2445/192304 | - |
dc.description.abstract | Simulating crowds requires controlling a very large number of trajectories of characters and is usually performed using crowd steering algorithms. The question of choosing the right algorithm with the right parameter values is of crucial importance given the large impact on the quality of results. In this paper, we study the performance of a number of steering policies (i.e., simulation algorithm and its parameters) in a variety of contexts, resorting to an existing quality function able to automatically evaluate simulation results. This analysis allows us to map contexts to the performance of steering policies. Based on this mapping, we demonstrate that distributing the best performing policies among characters improves the resulting simulations. Furthermore, we also propose a solution to dynamically adjust the policies, for each agent independently and while the simulation is running, based on the local context each agent is currently in. We demonstrate significant improvements of simulation results compared to previous work that would optimize parameters once for the whole simulation, or pick an optimized, but unique and static, policy for a given global simulation context. | - |
dc.format.extent | 11 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Wiley | - |
dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1111/cgf.14469 | - |
dc.relation.ispartof | Computer Graphics Forum, 2022, vol. 41, num. 2, p. 209-219 | - |
dc.relation.uri | https://doi.org/10.1111/cgf.14469 | - |
dc.rights | (c) The Eurographics Association and John Wiley & Sons, 2022 | - |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Sistemes multiagent | - |
dc.subject.classification | Simulació per ordinador | - |
dc.subject.classification | Algorismes computacionals | - |
dc.subject.other | Multiagent systems | - |
dc.subject.other | Computer simulation | - |
dc.subject.other | Computer algorithms | - |
dc.title | Dynamic Combination of Crowd Steering Policies Based on Context | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.idgrec | 725255 | - |
dc.date.updated | 2023-01-18T10:31:42Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
725255.pdf | 2.83 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.