Please use this identifier to cite or link to this item:
http://diposit.ub.edu/dspace/handle/2445/192480| Title: | Equidistribution and $\beta$-ensembles |
| Author: | Carroll, Tom Marzo Sánchez, Jordi Massaneda Clares, Francesc Xavier Ortega Cerdà, Joaquim |
| Keywords: | Funcions de diverses variables complexes Aplicacions holomòrfiques Teoria del potencial (Matemàtica) Matrius aleatòries Processos puntuals Functions of several complex variables Holomorphic mappings Potential theory (Mathematics) Random matrices Point processes |
| Issue Date: | 2018 |
| Publisher: | Université Toulouse III - Paul Sabatier |
| Abstract: | We find the precise rate at which the empirical measure associated to a $\beta$-ensemble converges to its limiting measure. In our setting the $\beta$-ensemble is a random point process on a compact complex manifold distributed according to the $\beta$ power of a determinant of sections in a positive line bundle. A particular case is the spherical ensemble of generalized random eigenvalues of pairs of matrices with independent identically distributed Gaussian entries. |
| Note: | Reproducció del document publicat a: https://doi.org/10.5802/afst.1572 |
| It is part of: | Annales de la Faculté des Sciences de Toulouse, 2018, vol. 27, num. 2, p. 377-387 |
| URI: | https://hdl.handle.net/2445/192480 |
| Related resource: | https://doi.org/10.5802/afst.1572 |
| ISSN: | 0240-2963 |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 669582.pdf | 305.12 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
