Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/192549
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMassaneda Clares, Francesc Xavier-
dc.contributor.authorPridhnani, Bharti-
dc.date.accessioned2023-01-24T10:31:56Z-
dc.date.available2023-01-24T10:31:56Z-
dc.date.issued2015-11-23-
dc.identifier.issn0022-2518-
dc.identifier.urihttps://hdl.handle.net/2445/192549-
dc.description.abstractGiven a Gaussian analytic function $f_L$ of intesity $L$ in the unit ball of $\mathbb{C}^n, n \geq 2$, consider its (random) zero variety $Z\left(f_L\right)$. We reduce the variance of the $(n-1)$-dimensional volume of $Z\left(f_L\right)$ inside a pseudo-hyperbolic ball of radius $r$ to an integral of a positive function in the unit disk. We illustrate the usefulness of this expression by describing the asymptotic behaviour of the variance as $r \rightarrow 1^{-}$and as $L \rightarrow \infty$. Both the results and the proofs generalise to the ball those given by Jeremiah Buckley for the unit disk.-
dc.format.extent29 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherIndiana University-
dc.relation.isformatofVersió preprint del document publicat a: https://www.jstor.org/stable/26316201-
dc.relation.ispartofIndiana University Mathematics Journal, 2015, vol. 64, num. 6, p. 1667-1695-
dc.rights(c) Indiana University Mathematics Journal, 2015-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationEspais analítics-
dc.subject.classificationProcessos gaussians-
dc.subject.otherAnalytic spaces-
dc.subject.otherGaussian processes-
dc.titleVolume fluctuations of random analytic varieties in the unit ball-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/submittedVersion-
dc.identifier.idgrec644426-
dc.date.updated2023-01-24T10:31:56Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
644426.pdf226.49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.