Please use this identifier to cite or link to this item:
Title: MOF-derived single-atom catalysts: The next frontier in advanced oxidation for water treatment
Author: Xia, Pan
Wang, Chaohai
He, Qiang
Ye, Zhihong
Sirés Sadornil, Ignacio
Keywords: Oxidació electroquímica
Depuració de l'aigua
Teoria del funcional de densitat
Electrolytic oxidation
Water purification
Density functionals
Issue Date: 27-Sep-2022
Publisher: Elsevier B.V.
Abstract: Over the last decade, single-atom catalysts (SACs) have emerged as a new frontier in the field of advanced oxidation processes (AOPs), since they allow combining the advantages of homogeneous and heterogeneous catalysts, eventually maximizing the atomic efficiency. Metal-organic frameworks (MOFs), periodic porous structures formed through self-assembly of transition metal cations and organic ligands, are regarded as an ideal precursor for the synthesis of SACs. In this review, the synthetic strategies and characterization methods for MOF-derived SACs are described, with special focus on experimental techniques and theoretical simulations employed to verify the existence of single atoms and metal-binding sites. In addition, applications of these catalysts in water treatment by AOPs and electrochemical AOPs based on the activation of persulfate and H2O2 are discussed, paying attention to reaction mechanisms investigated via DFT calculations. Finally, perspectives and research challenges for future development of MOF-derived SACs as catalysts in AOPs are commented.
Note: Versió postprint del document publicat a:
It is part of: Chemical Engineering Journal, 2022, vol. 452, p. 139446
Related resource:
ISSN: 1385-8947
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
726314.pdf3.5 MBAdobe PDFView/Open    Request a copy

Embargat   Document embargat fins el 27-9-2024

This item is licensed under a Creative Commons License Creative Commons