Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/193288
Title: | Composition of analytic paraproducts |
Author: | Aleman, Alexandru Cascante, Ma. Carme (Maria Carme) Fàbrega Casamitjana, Joan Peláez Márquez, José Ángel |
Keywords: | Funcions de diverses variables complexes Espais de Hardy Teoria d'operadors Operadors integrals Functions of several complex variables Hardy spaces Operator theory Integral operators |
Issue Date: | Feb-2022 |
Publisher: | Elsevier Masson |
Abstract: | For a fixed analytic function $g$ on the unit $\operatorname{disc} \mathbb{D}$, we consider the analytic paraproducts induced by $g$, which are defined by $T_g f(z)=\int_0^z f(\zeta) g^{\prime}(\zeta) d \zeta, S_g f(z)=\int_0^z f^{\prime}(\zeta) g(\zeta) d \zeta$, and $M_g f(z)=$ $f(z) g(z)$. The boundedness of these operators on various spaces of analytic functions on $\mathbb{D}$ is well understood. The original motivation for this work is to understand the boundedness of compositions of two of these operators, for example $T_g^2, T_g S_g, M_g T_g$, etc. Our methods yield a characterization of the boundedness of a large class of operators contained in the algebra generated by these analytic paraproducts acting on the classical weighted Bergman and Hardy spaces in terms of the symbol $g$. In some cases it turns out that this property is not affected by cancellation, while in others it requires stronger and more subtle restrictions on the oscillation of the symbol $g$ than the case of a single paraproduct. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1016/j.matpur.2021.11.007 |
It is part of: | Journal de Mathématiques Pures et Appliquées, 2022, vol. 158, num. 9, p. 293-319 |
URI: | https://hdl.handle.net/2445/193288 |
Related resource: | https://doi.org/10.1016/j.matpur.2021.11.007 |
ISSN: | 0021-7824 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
716032.pdf | 501.32 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License