Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/193293
Title: | Hankel Bilinear Forms on Generalized Fock-Sobolev Spaces on $C^n$ |
Author: | Cascante, Ma. Carme (Maria Carme) Fàbrega Casamitjana, Joan Pascuas Tijero, Daniel |
Keywords: | Funcions de diverses variables complexes Espais analítics Funcions holomorfes Teoria d'operadors Functions of several complex variables Analytic spaces Holomorphic functions Operator theory |
Issue Date: | 2020 |
Publisher: | Academia Scientiarum Fennica |
Abstract: | We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock-Sobolev spaces on $\mathbf{C}^n$ with respect to the weight $(1+|z|)^p e^{-\frac{\rho}{2}|*|^{2 t}}$, for $\ell \geq 1, \alpha>0$ and $\rho \in \mathbf{R}$. We obtain a weak decomposition of the Bergman kernel with estimates and a LittlewoodPaley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces. |
Note: | Reproducció del document publicat a: https://doi.org/10.5186/aasfm.2020.4546 |
It is part of: | Annales Academiae Scientiarum Fennicae. Mathematica, 2020, vol. 45, num. 2, p. 841-862 |
URI: | https://hdl.handle.net/2445/193293 |
Related resource: | https://doi.org/10.5186/aasfm.2020.4546 |
ISSN: | 1239-629X |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
699963.pdf | 298.19 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.