Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/193362
Title: | On the modularity level of modular abelian varieties over number fields |
Author: | González-Jiménez, Enrique Guitart Morales, Xavier |
Keywords: | Teoria de nombres Varietats abelianes Geometria algebraica Varietats de Shimura Number theory Abelian varieties Algebraic geometry Shimura varieties |
Issue Date: | Jul-2010 |
Publisher: | Elsevier |
Abstract: | Let $f$ be a weight two newform for $\Gamma_1(N)$ without complex multiplication. In this article we study the conductor of the absolutely simple factors $B$ of the variety $A_f$ over certain number fields $L$. The strategy we follow is to compute the restriction of scalars $\operatorname{Res}_{L / Q}(B)$, and then to apply Milne's formula for the conductor of the restriction of scalars. In this way we obtain an expression for the local exponents of the conductor $\mathcal{N}_L(B)$. Under some hypothesis it is possible to give global formulas relating this conductor with $N$. For instance, if $N$ is squarefree we find that $\mathcal{N}_L(B)$ belongs to $\mathbb{Z}$ and $\mathcal{N}_L(B) \mathfrak{f}_L^{\operatorname{dim} B}=N^{\operatorname{dim} B}$, where $\mathfrak{f}_L$ is the conductor of $L$. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1016/j.jnt.2010.03.003 |
It is part of: | Journal of Number Theory, 2010, vol. 130, num. 7, p. 1560-1570 |
URI: | https://hdl.handle.net/2445/193362 |
Related resource: | https://doi.org/10.1016/j.jnt.2010.03.003 |
ISSN: | 0022-314X |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
650040.pdf | 202.05 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.