Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/193366
Title: | Abelian varieties with many endomorphisms and their absolutely simple factors |
Author: | Guitart Morales, Xavier |
Keywords: | Geometria algebraica Teoria de nombres Varietats abelianes K-teoria Algebraic geometry Number theory Abelian varieties K-theory |
Issue Date: | 2012 |
Publisher: | European Mathematical Society Publishing House |
Abstract: | We characterize the abelian varieties arising as absolutely simple factors of $\mathrm{GL}_2$-type varieties over a number field $k$. In order to obtain this result, we study a wider class of abelian varieties: the $k$ varieties $A / k$ satisfying that $\operatorname{End}_k^0(A)$ is a maximal subfield of $\operatorname{End}_{\bar{k}}^0(A)$. We call them Ribet-Pyle varieties over $k$. We see that every Ribet-Pyle variety over $k$ is isogenous over $\bar{k}$ to a power of an abelian $k$-variety and, conversely, that every abelian $k$-variety occurs as the absolutely simple factor of some Ribet-Pyle variety over $k$. We deduce from this correspondence a precise description of the absolutely simple factors of the varieties over $k$ of $\mathrm{GL}_2$-type. |
Note: | Versió postprint del document publicat a: https://doi.org/10.4171/rmi/686 |
It is part of: | Revista Matematica Iberoamericana, 2012, vol. 28, num. 2, p. 591-601 |
URI: | https://hdl.handle.net/2445/193366 |
Related resource: | https://doi.org/10.4171/rmi/686 |
ISSN: | 0213-2230 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
650043.pdf | 190.5 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.