Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/193420
Title: Changes in solution turbidity and color during paracetamol removal in laboratory and pilot-scale semicontinuous ozonation reactors
Author: Villota, Natalia
Cruz-Alcalde, Alberto
Ferreiro, Cristian
Lombraña, José Ignacio
Esplugas Vidal, Santiago
Keywords: Color
Ozó
Color
Ozone
Issue Date: 14-Sep-2022
Publisher: Elsevier B.V.
Abstract: Injecting ozone by means of a venturi device causes an increase in the mass transfer coefficient with respect to gas dissolution through a microdiffuser. Moreover, it was observed that significant turbidity levels are not formed (<1 NTU) when using a microdiffuser, probably due to the relatively high stirring which avoids formation of intermolecular hydrogen bonds. On the contrary, employing a venturi injector led to the production of high turbidity levels in water (up to 20 NTU). This indicates that formation of supramolecular structures causing this turbidity requires the presence of certain facilitating species which are formed through ozone decomposition mechanisms. The maximum ozone transfer takes place when operating at pH0 9.0, that is, when this value is close to the pKa and employing a dose of R = 115 mol O3/mol Pa0. Under these conditions, the degradation of paracetamol generates color, which is attributed to the presence of condensation products from pyrogallol, catechol, resorcinol, acetamide, oxalic acid and 4-aminophenol. Once paracetamol is fully degraded and solution turns colorless, turbidity grows (>20 NTU). This is attributed to formation of high molecular weight structures from 4-aminophenol and oxamide. Operating with large ozone excess (R = 500 mol O3/mol Pa0), the maximum ozone transfer rate is achieved at pH0 = 12.0. Under these conditions, the pollutant is fully removed together with water aromaticity and oxalic acid (able to form linear structures through hydrogen bonding) is detected during color development. Then, turbidity is formed due to cyclic dimer formation from acetic acid.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.scitotenv.2022.158682
It is part of: Science of the Total Environment, 2022, vol. 854, num. 158682
URI: http://hdl.handle.net/2445/193420
Related resource: https://doi.org/10.1016/j.scitotenv.2022.158682
ISSN: 0048-9697
Appears in Collections:Articles publicats en revistes (Enginyeria Química i Química Analítica)

Files in This Item:
File Description SizeFormat 
726837.pdf252.54 kBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 14-9-2024


This item is licensed under a Creative Commons License Creative Commons