Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/193707| Title: | Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility |
| Author: | Vidal-Llana, Xenxo Guillén, Montserrat |
| Keywords: | Avaluació del risc Valor (Economia) Anàlisi de regressió Risk assessment Value (Economics) Regression analysis |
| Issue Date: | 17-Nov-2022 |
| Publisher: | Elsevier |
| Abstract: | Evaluating value at risk (VaR) for a firm's returns during periods of financial turmoil is a challenging task because of the high volatility in the market. We propose estimating conditional VaR and expected shortfall (ES) for a given firm's returns using quantile regression with cross-sectional (CSQR) data about other firms operating in the same market. An evaluation using US market data between 2000 and 2020 shows that our approach has certain advantages over a CAViaR model. Identification of low-risk firms and a reduction in computing times are additional advantages of the new method described. |
| Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.najef.2022.101835 |
| It is part of: | North American Journal of Economics and Finance, 2022, vol. 63, p. 101835 |
| URI: | https://hdl.handle.net/2445/193707 |
| Related resource: | https://doi.org/10.1016/j.najef.2022.101835 |
| ISSN: | 1062-9408 |
| Appears in Collections: | Articles publicats en revistes (Econometria, Estadística i Economia Aplicada) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 729805.pdf | 1.54 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
