Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/193755
Title: Electrochemical oxidation of meglumine in a pharmaceutical formulation using a nanocomposite anode
Author: Lozano Gutiérrez, G.I.
Ornelas Dávila, O.
López Aguilar, C.
Dávila Jiménez, M.M.
Silva González, R.
Sirés Sadornil, Ignacio
Brillas, Enric
Fabregat-Safont, D.
Roig Navarro, A.F.
Beltrán Arandes, J.
Sancho Llopis, Juan V.
Keywords: Grafit
Electroquímica
Voltametria
Graphite
Electrochemistry
Voltammetry
Issue Date: 30-Oct-2022
Publisher: Elsevier Ltd
Abstract: The electrocatalytic oxidation of meglumine and gadoterate meglumine (Gd-DOTA) on a TiO2-Ni(SO4)0.3(OH)1.4 composite anode was investigated in alkaline medium (5 M KOH) using cyclic voltammetry and chronoamperometry. The composite was prepared by hydrothermal method and the morphology and structure of the produced nanoparticles were studied by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, atomic force microscopy, BET surface area analysis and Fourier transform infrared spectroscopy. The characterization revealed the formation of Ni(SO4)0.3(OH)1.4 nanobelts dispersed on TiO2 nanoaggregates. The composite was coated onto a porous graphite rod, showing good adherence without requiring any binder (according to their anodic and cathodic charges). The supported composite was electrocatalytic, allowing the oxidation of meglumine, either as pure reagent or contained in gadoterate meglumine solutions. Electrochemical methods allowed determining the kinetic parameters, such as the electron transfer coefficient α, the total number of electrons n and the standard heterogeneous rate constant k0 for the reaction of meglumine. The chronoamperometric tests informed about the good stability of the composite anode upon meglumine oxidation at +0.6 V for 10 h. The electrochemical oxidation of meglumine in a commercial pharmaceutical formulation (Dotarem®) was corroborated via ultra-high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.electacta.2022.141457
It is part of: Electrochimica Acta, 2022, vol. 437, p. 141457
URI: http://hdl.handle.net/2445/193755
Related resource: https://doi.org/10.1016/j.electacta.2022.141457
ISSN: 0013-4686
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
726856.pdf1.97 MBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 30-10-2024


This item is licensed under a Creative Commons License Creative Commons