Please use this identifier to cite or link to this item:
Title: Cluster Beam Study of (MgSiO3)+-Based Monomeric Silicate Species and Their Interaction with Oxygen: Implications for Interstellar Astrochemistry
Author: Mariñoso Guiu, Joan
Ghejan, Bianca Andreea
Bernhardt, Thorsten M.
Bakker, Joost M.
Lang, Sandra M.
Bromley, Stefan Thomas
Keywords: Silicats
Matèria interstel·lar
Pols còsmica
Espectroscòpia infraroja
Interstellar matter
Cosmic dust
Infrared spectroscopy
Issue Date: 6-Oct-2022
Publisher: American Chemical Society
Abstract: Silicates are ubiquitously found as small dust grains throughout the universe. These particles are frequently subject to high-energy processes and subsequent condensation in the interstellar medium (ISM), where they are broken up into many ultrasmall silicate fragments. These abundant molecular-sized silicates likely play an important role in astrochemistry. By approximately mimicking silicate dust grain processing occurring in the diffuse ISM by ablation/cooling of a Mg/Si source material in the presence of O2, we observed the creation of stable clusters based on discrete pyroxene monomers (MgSiO3+), which traditionally have only been considered possible as constituents of bulk silicate materials. Our study suggests that such pyroxene monomer-based clusters could be highly abundant in the ISM from the processing of larger silicate dust grains. A detailed analysis, by infrared multiple-photon dissociation (IR-MPD) spectroscopy and density functional theory (DFT) calculations, reveals the structures and properties of these monomeric silicate species. We find that the clusters interact strongly with oxygen, with some stable cluster isomers having a silicate monomeric core bound to an ozone-like moiety. The general high tendency of these monomeric silicate species to strongly adsorb O2 molecules also suggests that they could be relevant to the observed and unexplained depletion of oxygen in the ISM. We further find clusters where a Mg atom is bound to the MgSiO3 monomer core. These species can be considered as the simplest initial step in monomer-initiated nucleation, indicating that small ionized pyroxenic clusters could also assist in the reformation of larger silicate dust grains in the ISM.
Note: Reproducció del document publicat a:
It is part of: ACS Earth and Space Chemistry, 2022, vol. 6, p. 2465-2470
Related resource:
ISSN: 2472-3452
Appears in Collections:Articles publicats en revistes (Institut de Química Teòrica i Computacional (IQTCUB))
Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
729826.pdf2.41 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons