Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/193862
Title: Irreducibility of the moduli space of orthogonal instanton bundles on Pn
Author: Andrade, Aline V.
Marchesi, Simone
Miró-Roig, Rosa M. (Rosa Maria)
Keywords: Teoria de mòduls
Superfícies algebraiques
Moduli theory
Algebraic surfaces
Issue Date: 29-Jul-2019
Publisher: Springer Nature
Abstract: In order to obtain existence criteria for orthogonal instanton bundles on $\mathbb{P}^n$, we provide a bijection between equivalence classes of orthogonal instanton bundles with no global sections and symmetric forms. Using such correspondence we are able to provide explicit examples of orthogonal instanton bundles with no global sections on $\mathbb{P}^n$ and prove that every orthogonal instanton bundle with no global sections on $\mathbb{P}^n$ and charge $c \geq 2$ has rank $r \leq(n-1) c$. We also prove that when the rank $r$ of the bundles reaches the upper bound, $\mathcal{M}_{\mathbb{P}}^{\mathcal{O}}(c, r)$, the coarse moduli space of orthogonal instanton bundles with no global sections on $\mathbb{P}^n$, with charge $c \geq 2$ and rank $r$, is affine, smooth, reduced and irreducible. Last, we construct Kronecker modules to determine the splitting type of the bundles in $\mathcal{M}_{\mathbb{P} n}^{\mathcal{O}}(c, r)$, whenever is non-empty.
Note: Versió postprint del document publicat a: https://doi.org/10.1007/s13163-019-00317-y
It is part of: Revista Matematica Complutense, 2019, vol. 33, p. 271-294
URI: https://hdl.handle.net/2445/193862
Related resource: https://doi.org/10.1007/s13163-019-00317-y
ISSN: 1139-1138
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
692158.pdf289.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.