Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/193871
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gelfreich, Vassili | - |
dc.contributor.author | Simó, Carles. | - |
dc.contributor.author | Vieiro Yanes, Arturo | - |
dc.date.accessioned | 2023-02-20T18:52:05Z | - |
dc.date.available | 2023-02-20T18:52:05Z | - |
dc.date.issued | 2013-01-15 | - |
dc.identifier.issn | 0167-2789 | - |
dc.identifier.uri | http://hdl.handle.net/2445/193871 | - |
dc.description.abstract | We study the dynamics of a family of $4 D$ symplectic mappings near a doubly resonant elliptic fixed point. We derive and discuss algebraic properties of the resonances required for the analysis of a Takens type normal form. In particular, we propose a classification of the double resonances adapted to this problem, including cases of both strong and weak resonances. Around a weak double resonance (a junction of two resonances of two different orders, both being larger than 4) the dynamics can be described in terms of a simple (in general non-integrable) Hamiltonian model. The non-integrability of the normal form is a consequence of the splitting of the invariant manifolds associated with a normally hyperbolic invariant cylinder. We use a $4 D$ generalisation of the standard map in order to illustrate the difference between a truncated normal form and a full $4 D$ symplectic map. We evaluate numerically the volume of a $4 D$ parallelotope defined by 4 vectors tangent to the stable and unstable manifolds respectively. In good agreement with the general theory this volume is exponentially small with respect to a small parameter and we derive an empirical asymptotic formula which suggests amazing similarity to its $2 D$ analog. Different numerical studies point out that double resonances play a key role to understand Arnold diffusion. This paper has to be seen, also, as a first step in this direction. | - |
dc.format.extent | 19 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.physd.2012.10.001 | - |
dc.relation.ispartof | Physica D, 2013, vol. 243, num. 1, p. 92-110 | - |
dc.relation.uri | https://doi.org/10.1016/j.physd.2012.10.001 | - |
dc.rights | (c) Elsevier B.V., 2013 | - |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Sistemes hamiltonians | - |
dc.subject.classification | Funcions de Lagrange | - |
dc.subject.classification | Sistemes dinàmics diferenciables | - |
dc.subject.classification | Teoria ergòdica | - |
dc.subject.other | Hamiltonian systems | - |
dc.subject.other | Lagrangian functions | - |
dc.subject.other | Differentiable dynamical systems | - |
dc.subject.other | Ergodic theory | - |
dc.title | Dynamics of 4 $D$ symplectic maps near a double resonance | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.idgrec | 625611 | - |
dc.date.updated | 2023-02-20T18:52:05Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
625611.pdf | 1.3 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.