Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/194107
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cinti, Eleonora | - |
dc.contributor.author | Glaudo, Federico | - |
dc.contributor.author | Pratelli, Aldo | - |
dc.contributor.author | Ros, Xavier | - |
dc.contributor.author | Serra, Joaquim | - |
dc.date.accessioned | 2023-02-24T09:22:15Z | - |
dc.date.available | 2023-02-24T09:22:15Z | - |
dc.date.issued | 2022-01-12 | - |
dc.identifier.issn | 0002-9947 | - |
dc.identifier.uri | https://hdl.handle.net/2445/194107 | - |
dc.description.abstract | We prove the sharp quantitative stability for a wide class of weighted isoperimetric inequalities. More precisely, we consider isoperimetric inequalities in convex cones with homogeneous weights. Inspired by the proof of such isoperimetric inequalities through the ABP method (see [CRS16]), we construct a new convex coupling (i.e., a map that is the gradient of a convex function) between a generic set $E$ and the minimizer of the inequality (as in Gromov's proof of the isoperimetric inequality). Even if this map does not come from optimal transport, and even if there is a weight in the inequality, we adapt the methods of [FMP10] and prove that if $E$ is almost optimal for the inequality then it is quantitatively close to a minimizer up to translations. Then, a delicate analysis is necessary to rule out the possibility of translations. As a step of our proof, we establish a sharp regularity result for restricted convex envelopes of a function that might be of independent interest. | - |
dc.format.extent | 47 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | American Mathematical Society (AMS) | - |
dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1090/tran/8525 | - |
dc.relation.ispartof | Transactions of the American Mathematical Society, 2022, vol. 375, p. 1509-1555 | - |
dc.relation.uri | https://doi.org/10.1090/tran/8525 | - |
dc.rights | cc-by-nc-nd (c) American Mathematical Society (AMS), 2022 | - |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Varietats (Matemàtica) | - |
dc.subject.classification | Optimització matemàtica | - |
dc.subject.classification | Teoria de la mesura geomètrica | - |
dc.subject.other | Manifolds (Mathematics) | - |
dc.subject.other | Mathematical optimization | - |
dc.subject.other | Geometric measure theory | - |
dc.title | Sharp quantitative stability for isoperimetric inequalities with homogeneous weights | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/acceptedVersion | - |
dc.identifier.idgrec | 719151 | - |
dc.date.updated | 2023-02-24T09:22:15Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
719151.pdf | 534.8 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License