Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/194355
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReuss, Joana-
dc.contributor.authorPascual, Guillem-
dc.contributor.authorWenzek, Hagen-
dc.contributor.authorSeguí Mesquida, Santi-
dc.date.accessioned2023-02-28T19:06:56Z-
dc.date.available2023-02-28T19:06:56Z-
dc.date.issued2022-02-15-
dc.identifier.issn2075-4418-
dc.identifier.urihttps://hdl.handle.net/2445/194355-
dc.description.abstractWireless Capsule Endoscopy (WCE) is a procedure to examine the human digestive system for potential mucosal polyps, tumours, or bleedings using an encapsulated camera. This work focuses on polyp detection within WCE videos through Machine Learning. When using Machine Learning in the medical field, scarce and unbalanced datasets often make it hard to receive a satisfying performance. We claim that using Sequential Models in order to take the temporal nature of the data into account improves the performance of previous approaches. Thus, we present a bidirectional Long Short-Term Memory Network (BLSTM), a sequential network that is particularly designed for temporal data. We find the BLSTM Network outperforms non-sequential architectures and other previous models, receiving a final Area under the Curve of 93.83%. Experiments show that our method of extracting spatial and temporal features yields better performance and could be a possible method to decrease the time needed by physicians to analyse the video material.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/diagnostics12020501-
dc.relation.ispartofDiagnostics, 2022, vol. 12-
dc.relation.urihttps://doi.org/10.3390/diagnostics12020501-
dc.rightscc-by (c) Reuss, Joana et al., 2022-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationPòlips (Patologia)-
dc.subject.classificationCàpsula endoscòpica-
dc.subject.classificationProcessament digital d'imatges-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.otherPolyps (Pathology)-
dc.subject.otherCapsule endoscopy-
dc.subject.otherDigital image processing-
dc.subject.otherNeural networks (Computer science)-
dc.titleSequential Models for Endoluminal Image Classification-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec730930-
dc.date.updated2023-02-28T19:06:56Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
730930.pdf8.31 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons