Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/194355
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Reuss, Joana | - |
dc.contributor.author | Pascual, Guillem | - |
dc.contributor.author | Wenzek, Hagen | - |
dc.contributor.author | Seguí Mesquida, Santi | - |
dc.date.accessioned | 2023-02-28T19:06:56Z | - |
dc.date.available | 2023-02-28T19:06:56Z | - |
dc.date.issued | 2022-02-15 | - |
dc.identifier.issn | 2075-4418 | - |
dc.identifier.uri | https://hdl.handle.net/2445/194355 | - |
dc.description.abstract | Wireless Capsule Endoscopy (WCE) is a procedure to examine the human digestive system for potential mucosal polyps, tumours, or bleedings using an encapsulated camera. This work focuses on polyp detection within WCE videos through Machine Learning. When using Machine Learning in the medical field, scarce and unbalanced datasets often make it hard to receive a satisfying performance. We claim that using Sequential Models in order to take the temporal nature of the data into account improves the performance of previous approaches. Thus, we present a bidirectional Long Short-Term Memory Network (BLSTM), a sequential network that is particularly designed for temporal data. We find the BLSTM Network outperforms non-sequential architectures and other previous models, receiving a final Area under the Curve of 93.83%. Experiments show that our method of extracting spatial and temporal features yields better performance and could be a possible method to decrease the time needed by physicians to analyse the video material. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | MDPI | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.3390/diagnostics12020501 | - |
dc.relation.ispartof | Diagnostics, 2022, vol. 12 | - |
dc.relation.uri | https://doi.org/10.3390/diagnostics12020501 | - |
dc.rights | cc-by (c) Reuss, Joana et al., 2022 | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | - |
dc.subject.classification | Pòlips (Patologia) | - |
dc.subject.classification | Càpsula endoscòpica | - |
dc.subject.classification | Processament digital d'imatges | - |
dc.subject.classification | Xarxes neuronals (Informàtica) | - |
dc.subject.other | Polyps (Pathology) | - |
dc.subject.other | Capsule endoscopy | - |
dc.subject.other | Digital image processing | - |
dc.subject.other | Neural networks (Computer science) | - |
dc.title | Sequential Models for Endoluminal Image Classification | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.identifier.idgrec | 730930 | - |
dc.date.updated | 2023-02-28T19:06:56Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
730930.pdf | 8.31 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License