Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/194381
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLinardos, Akis-
dc.contributor.authorKushibar, Kaisar-
dc.contributor.authorWalsh, Sean-
dc.contributor.authorGkontra, Polyxeni-
dc.contributor.authorLekadir, Karim, 1977--
dc.date.accessioned2023-03-01T09:14:29Z-
dc.date.available2023-03-01T09:14:29Z-
dc.date.issued2022-03-03-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/2445/194381-
dc.description.abstractDeep learning models can enable accurate and efficient disease diagnosis, but have thus far been hampered by the data scarcity present in the medical world. Automated diagnosis studies have been constrained by underpowered single-center datasets, and although some results have shown promise, their generalizability to other institutions remains questionable as the data heterogeneity between institutions is not taken into account. By allowing models to be trained in a distributed manner that preserves patients' privacy, federated learning promises to alleviate these issues, by enabling diligent multi-center studies. We present the first simulated federated learning study on the modality of cardiovascular magnetic resonance and use four centers derived from subsets of the M&M and ACDC datasets, focusing on the diagnosis of hypertrophic cardiomyopathy. We adapt a 3D-CNN network pretrained on action recognition and explore two different ways of incorporating shape prior information to the model, and four different data augmentation set-ups, systematically analyzing their impact on the different collaborative learning choices. We show that despite the small size of data (180 subjects derived from four centers), the privacy preserving federated learning achieves promising results that are competitive with traditional centralized learning. We further find that federatively trained models exhibit increased robustness and are more sensitive to domain shift effects.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-022-07186-4-
dc.relation.ispartofScientific Reports, 2022, num. 12-
dc.relation.urihttps://doi.org/10.1038/s41598-022-07186-4-
dc.rightscc-by (c) Linardos, Akis et al., 2022-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationDiagnòstic per la imatge-
dc.subject.classificationMalalties del cor-
dc.subject.classificationAprenentatge automàtic-
dc.subject.otherDiagnostic imaging-
dc.subject.otherHeart diseases-
dc.subject.otherMachine learning-
dc.titleFederated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec730443-
dc.date.updated2023-03-01T09:14:29Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
730443.pdf1.79 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons