Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/194393
Title: High resolution ambient MS imaging of biological samples by desorption electro-flow focussing ionization
Author: Wu, Vincen
Tillner, Jocelyn
Jones, Emrys
McKenzie, James S
Gurung, Dipa
Mroz, Anna
Poynter, Liam
Simon, Daniel
Grau, Cristina
Altafaj, Xavier
Dumas, Marc-Emmanuel
Gilmore, Ian
Bunch, Josephine
Takats, Zoltan
Keywords: Cervell
Diagnòstic per la imatge
Espectrometria de masses
Espectrometria de masses amb ionització per electroesprai
Ratolins (Animals de laboratori)
Brain
Diagnostic imaging
Mass spectrometry
Electrospray ionization mass spectrometry
Mice (Laboratory animals)
Issue Date: 19-Jul-2022
Publisher: American Chemical Society
Abstract: In this study, we examine the suitability of desorption electro-flow focusing ionization (DEFFI) for mass spectrometry imaging (MSI) of biological tissue. We also compare the performance of desorption electrospray ionization (DESI) with and without the flow focusing setup. The main potential advantages of applying the flow focusing mechanism in DESI is its rotationally symmetric electrospray jet, higher intensity, more controllable parameters, and better portability due to the robustness of the sprayer. The parameters for DEFFI have therefore been thoroughly optimized, primarily for spatial resolution but also for intensity. Once the parameters have been optimized, DEFFI produces similar images to the existing DESI. MS images for mouse brain samples, acquired at a nominal pixel size of 50 μm, are comparable for both DESI setups, albeit the new sprayer design yields better sensitivity. Furthermore, the two methods are compared with regard to spectral intensity as well as the area of the desorbed crater on rhodamine-coated slides. Overall, the implementation of a flow focusing mechanism in DESI is shown to be highly suitable for imaging biological tissue and has potential to overcome some of the shortcomings experienced with the current geometrical design of DESI.
Note: Reproducció del document publicat a: https://doi.org/10.1021/acs.analchem.2c00345
It is part of: Analytical Chemistry, 2022, vol. 94, num. 28, p. 10035-10044
URI: http://hdl.handle.net/2445/194393
Related resource: https://doi.org/10.1021/acs.analchem.2c00345
ISSN: 0003-2700
Appears in Collections:Articles publicats en revistes (Biomedicina)

Files in This Item:
File Description SizeFormat 
731730.pdf2.56 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons