Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/194585
Title: Esrrb Regulates Specific Feed-Forward Loops to Transit From Pluripotency Into Early Stages of Differentiation
Author: Mazloom, Amin R.
Xu, Huilei
Reig-Palou, Jaume
Vasileva, Ana
Román, Angel-Carlos
Mulero-Navarro, Sonia
Lemischka, Ihor R.
Sevilla, Ana
Keywords: Micro RNAs
Compostos bioactius vegetals
MicroRNAs
Plant bioactive compounds
Issue Date: 16-May-2022
Publisher: Frontiers Media
Abstract: Characterization of pluripotent states, in which cells can both self-renew or differentiate, with the irreversible loss of pluripotency, are important research areas in developmental biology. Although microRNAs (miRNAs) have been shown to play a relevant role in cellular differentiation, the role of miRNAs integrated into gene regulatory networks and its dynamic changes during these early stages of embryonic stem cell (ESC) differentiation remain elusive. Here we describe the dynamic transcriptional regulatory circuitry of stem cells that incorporate protein-coding and miRNA genes based on miRNA array expression and quantitative sequencing of short transcripts upon the downregulation of the Estrogen Related Receptor Beta (Esrrb). The data reveals how Esrrb, a key stem cell transcription factor, regulates a specific stem cell miRNA expression program and integrates dynamic changes of feed-forward loops contributing to the early stages of cell differentiation upon its downregulation. Together these findings provide new insights on the architecture of the combined transcriptional post-transcriptional regulatory network in embryonic stem cells.
Note: Reproducció del document publicat a: https://doi.org/10.3389/fcell.2022.820255
It is part of: Frontiers In Cell And Developmental Biology, 2022, vol. 10
URI: http://hdl.handle.net/2445/194585
Related resource: https://doi.org/10.3389/fcell.2022.820255
ISSN: 2296-634X
Appears in Collections:Articles publicats en revistes (Biologia Cel·lular, Fisiologia i Immunologia)

Files in This Item:
File Description SizeFormat 
723671.pdf2.68 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons