Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/194741
Title: | Escape Times Across the Golden Cantorus of the Standard Map |
Author: | Miguel, Narcís Simó, Carles Vieiro Yanes, Arturo |
Keywords: | Sistemes dinàmics de baixa dimensió Low-dimensional dynamical systems |
Issue Date: | 2-Jun-2022 |
Publisher: | Pleiades Publishing |
Abstract: | We consider the Chirikov standard map for values of the parameter larger than but close to Greene's $k_G$. We investigate the dynamics near the golden Cantorus and study escape rates across it. Mackay $[17,19]$ described the behaviour of the mean of the number of iterates $\left\langle N_k\right\rangle$ to cross the Cantorus as $k \rightarrow k_G$ and showed that there exists $B<0$ so that $\left\langle N_k\right\rangle\left(k-k_G\right)^B$ becomes 1-periodic in a suitable logarithmic scale. The numerical explorations here give evidence of the shape of this periodic function and of the relation between the escape rates and the evolution of the stability islands close to the Cantorus. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1134/S1560354722030029 |
It is part of: | Regular and Chaotic Dynamics, 2022, vol. 27, num. 3, p. 281-306 |
URI: | https://hdl.handle.net/2445/194741 |
Related resource: | https://doi.org/10.1134/S1560354722030029 |
ISSN: | 1560-3547 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
718390.pdf | 8.92 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.