Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/194753
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMachuca, P.-
dc.contributor.authorSánchez, J.P.-
dc.contributor.authorMasdemont, Josep J.-
dc.contributor.authorGómez Muntané, Gerardo-
dc.date.accessioned2023-03-07T11:55:22Z-
dc.date.available2023-03-07T11:55:22Z-
dc.date.issued2020-
dc.identifier.issn0094-5765-
dc.identifier.urihttp://hdl.handle.net/2445/194753-
dc.description.abstractFast development of CubeSat technology now enables the first interplanetary missions. The potential application of CubeSats to flyby near-Earth asteroids is explored in this paper in consideration of CubeSats' limited pro- pulsive capabilities and systems constraints. Low-energy asteroid flyby trajectories are designed assuming a CubeSat is initially parked around to the Sun-Earth Lagrange points. High-impulse and low-thrust trajectories with realistic thrusting models are computed first in the Circular Restricted Three-Body Problem (CR3BP), and then in a high-fidelity ephemeris model. Analysis in the ephemeris model is used to confirm that trajectories computed in the CR3BP model also exist in a more realistic dynamical model, and to verify the validity of the results obtained in CR3BP analysis. A catalogue of asteroid flyby opportunities between years 2019 and 2030 is provided, with 80 m/s of availableΔV and departure from halo orbits around the first and second Sun-Earth Lagrange points (of similar size to those typically used by scientific missions). Results show that the CR3BP model can serve as an effective tool to identify reachable asteroids and can provide an initial estimation of the ΔV cost in the ephemeris model (with ± 15 m/s accuracy). An impulsive maneuver model can also provide an accurate estimation of theΔV requirement for a CubeSat equipped with a high-impulse thruster (with 4 m/s accuracy), even if its thrust magnitude is small and requires duty cycling; low-thrustΔV requirements, however, may differ significantly from the impulsive results ( ± 15 m/s).-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier Ltd-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.actaastro.2019.09.041-
dc.relation.ispartofActa Astronautica, 2020, vol. 167, p. 146-163-
dc.relation.urihttps://doi.org/10.1016/j.actaastro.2019.09.041-
dc.rightscc-by-nc-nd (c) Elsevier Ltd, 2020-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationSatèl·lits artificials-
dc.subject.classificationDinàmica-
dc.subject.otherArtificial satellites-
dc.subject.otherDynamics-
dc.titleHigh-fidelity trajectory design to flyby near-earth asteroids using cubesats-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec701411-
dc.date.updated2023-03-07T11:55:22Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
701411.pdf2.43 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons