Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/194781
Title: Multimodal in vivo imaging of the integrated postnatal development of brain and skull and its co-modulation with neurodevelopment in a Down syndrome mouse model
Author: Llambrich, Sergi
González, Rubèn
Albaigès, Julia
Wouters, Jens
Marain, Fopke
Himmelreich, Uwe
Sharpe, James
Dierssen, Mara
Gsell, Willy
Martínez Abadías, Neus, 1978-
Vande Velde, Greetje
Keywords: Cervell
Crani
Síndrome de Down
Imatges per ressonància magnètica
Brain
Skull
Down syndrome
Magnetic resonance imaging
Issue Date: 11-Feb-2022
Publisher: Frontiers Media
Abstract: The brain and skeletal systems are intimately integrated during development through common molecular pathways. This is evidenced by genetic disorders where brain and skull dysmorphologies are associated. However, the mechanisms underlying neural and skeletal interactions are poorly understood. Using the Ts65Dn mouse model of Down syndrome (DS) as a case example, we performed the first longitudinal assessment of brain, skull and neurobehavioral development to determine alterations in the coordinated morphogenesis of brain and skull. We optimized a multimodal protocol combining in vivo micro-computed tomography (μCT) and magnetic resonance imaging (μMRI) with morphometric analyses and neurodevelopmental tests to longitudinally monitor the different systems' development trajectories during the first postnatal weeks. We also explored the impact of a perinatal treatment with green tea extracts enriched in epigallocatechin-3-gallate (GTE-EGCG), which can modulate cognition, brain and craniofacial development in DS. Our analyses quantified alterations associated with DS, with skull dysmorphologies appearing before brain anomalies, reduced integration and delayed acquisition of neurodevelopmental traits. Perinatal GTE-EGCG induced disparate effects and disrupted the magnitude of integration and covariation patterns between brain and skull. Our results exemplify how a longitudinal research approach evaluating the development of multiple systems can reveal the effect of morphological integration modulating the response of pathological phenotypes to treatment, furthering our understanding of complex genetic disorders.
Note: Reproducció del document publicat a: https://doi.org/10.3389/fmed.2022.815739
It is part of: Frontiers in Medicine, 2022, vol. 9, num. 815739, p. 1-16
URI: http://hdl.handle.net/2445/194781
Related resource: https://doi.org/10.3389/fmed.2022.815739
ISSN: 2296-858X
Appears in Collections:Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
717409.pdf3.28 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons