Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/194820
Title: | Hypertetrahedral arrangements |
Author: | Colarte Gómez, Liena Costa Farràs, Laura Marchesi, Simone Miró-Roig, Rosa M. (Rosa Maria) Salat Moltó, Martí |
Keywords: | Geometria algebraica Anells commutatius Homologia Algebraic geometry Commutative rings Homology |
Issue Date: | 19-Dec-2021 |
Publisher: | Springer Verlag |
Abstract: | In this paper, we introduce the notion of a complete hypertetrahedral arrangement $\mathcal{A}$ in $\mathbb{P}^n$. We address two basic problems. First, we describe the local freeness of $\mathcal{A}$ in terms of smaller complete hypertetrahedral arrangements and graph theory properties, specializing the Mustață-Schenck criterion. As an application, we obtain that general complete hypertetrahedral arrangements are not locally free. In the second part of this paper, we bound the initial degree of the first syzygy module of the Jacobian ideal of $\mathcal{A}$. |
Note: | Reproducció del document publicat a: https://doi.org/10.1007/s00209-021-02911-7 |
It is part of: | Mathematische Zeitschrift, 2021, vol. 301, p. 515-539 |
URI: | https://hdl.handle.net/2445/194820 |
Related resource: | https://doi.org/10.1007/s00209-021-02911-7 |
ISSN: | 0025-5874 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
717456.pdf | 643.06 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License