Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/194996
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFigueras, Marc-
dc.contributor.authorGutiérrez, Ramon A.-
dc.contributor.authorViñes Solana, Francesc-
dc.contributor.authorRamirez, Pedro J.-
dc.contributor.authorRodríguez, José A.-
dc.contributor.authorIllas i Riera, Francesc-
dc.date.accessioned2023-03-10T14:00:43Z-
dc.date.available2023-03-10T14:00:43Z-
dc.date.issued2021-08-06-
dc.identifier.issn2155-5435-
dc.identifier.urihttps://hdl.handle.net/2445/194996-
dc.description.abstractExperiments under controlled conditions show that MoCx nanoclusters supported on an inert Au(111) support are efficient catalysts for CO2 conversion, although with a prominent role of stoichiometry. In particular, C-deficient nanoparticles directly dissociate CO2 and rapidly become deactivated. On the contrary, nearly stoichiometric nanoparticles reversibly adsorb/desorb CO2 and, after exposure to hydrogen, CO2 converts predominantly to CO with a significant amount of methanol and no methane or other alkanes as reaction products. The apparent activation energy for this process (14 kcal/mol) is smaller than that corresponding to bulk δ-MoC (17 kcal/mol) or a Cu(111) benchmark system (25 kcal/mol). This trend reflects the superior ability of MoC1.1/Au(111) to bind and dissociate CO2. Model calculations carried out in the framework of density functional theory provide insights into the underlying mechanism suggesting that CO2 hydrogenation on the hydrogen-covered stoichiometric MoCx nanoparticles supported on Au(111) proceeds mostly under an Eley-Rideal mechanism. The influence of the Au(111) is also analyzed and proven to have a role on the final reaction energy but almost no effect on the activation energy and transition state structure of the analyzed reaction pathways.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acscatal.1c01738-
dc.relation.ispartofACS Catalysis, 2021, vol. 11, num. 15, p. 9679-9687-
dc.relation.urihttps://doi.org/10.1021/acscatal.1c01738-
dc.rightscc-by (c) Figueras, Marc, et al., 2021-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationHidrogenació-
dc.subject.classificationCompostos de carboni-
dc.subject.classificationDissociació (Química)-
dc.subject.otherHydrogenation-
dc.subject.otherCarbon compounds-
dc.subject.otherDissociation-
dc.titleSupported Molybdenum Carbide Nanoparticles as an Excellent Catalyst for CO2 Hydrogenation-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec713936-
dc.date.updated2023-03-10T14:00:43Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
713936.pdf4.9 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons