Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/195648
Title: First Organoid Intelligence (OI) workshop to form an OI community
Author: Morales Pantoja, Itzy E.
Smirnova, Lena
Muotri, Alysson R.
Wahlin, Karl J.
Kahn, Jeffrey
Boyd, J. Lomax
Gracias, David H.
Harris, Timothy D.
Cohen-Karni, Tzahi
Caffo, Brian S.
Szalay, Alexander S.
Han, Fang
Zack, Donald J.
Etienne-Cummings, Ralph
Akwaboah, Akwasi
Romero, July Carolina
Alam El Din, Dowlette-Mary
Plotkin, Jesse D.
Paulhamus, Barton L.
Johnson, Erik C.
Gilbert, Frederic
Curley, J. Lowry
Cappiello, Ben
Schwamborn, Jens C.
Hill, Eric J.
Roach, Paul
Tornero, Daniel
Krall, Caroline
Parri, Rheinallt
Sillé, Fenna
Levchenko, Andre
Jabbour, Rabih E.
Kagan, Brett J.
Berlinicke, Cynthia A.
Huang, Qi
Maertens, Alexandra
Herrmann, Kathrin
Tsaioun, Katya
Dastgheyb, Raha
Habela, Christa Whelan
Vogelstein, Joshua T.
Hartung, Thomas
Keywords: Intel·ligència artificial en medicina
Bioenginyeria
Biologia computacional
Cervell
Cognició
Electrofisiologia
Fisiologia cel·lular
Medical artificial intelligence
Bioengineering
Computational biology
Brain
Cognition
Electrophysiology
Cell physiology
Issue Date: 28-Feb-2023
Publisher: Frontiers
Abstract: The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.
Note: Reproducció del document publicat a: https://doi.org/10.3389/frai.2023.1116870
It is part of: Frontiers in Artificial Intelligence, 2023, vol. 6, p. 6:1116870
URI: http://hdl.handle.net/2445/195648
Related resource: https://doi.org/10.3389/frai.2023.1116870
ISSN: 2624-8212
Appears in Collections:Articles publicats en revistes (Institut de Neurociències (UBNeuro))
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Biomedicina)

Files in This Item:
File Description SizeFormat 
732694.pdf712.33 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons