Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/195865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOliva, Vincenzo-
dc.contributor.authorDe Prisco, Michele-
dc.contributor.authorPons Cabrera, Maria Teresa-
dc.contributor.authorGuzmán, Pablo-
dc.contributor.authorAnmella, Gerard-
dc.contributor.authorHidalgo Mazzei, Diego-
dc.contributor.authorGrande i Fullana, Iria-
dc.contributor.authorFanelli, Giuseppe-
dc.contributor.authorFabbri, Chiara-
dc.contributor.authorSerretti, Alessandro-
dc.contributor.authorFornaro, Michele-
dc.contributor.authorIasevoli, Felice-
dc.contributor.authorDe Bartolomeis, Andrea-
dc.contributor.authorMurru, Andrea-
dc.contributor.authorVieta i Pascual, Eduard, 1963--
dc.contributor.authorFico, Giovanna-
dc.date.accessioned2023-03-23T13:25:05Z-
dc.date.available2023-03-23T13:25:05Z-
dc.date.issued2022-07-06-
dc.identifier.issn2077-0383-
dc.identifier.urihttps://hdl.handle.net/2445/195865-
dc.description.abstractSubstance use disorder (SUD) is a common comorbidity in individuals with bipolar disorder (BD), and it is associated with a severe course of illness, making early identification of the risk factors for SUD in BD warranted. We aimed to identify, through machine-learning models, the factors associated with different types of SUD in BD. We recruited 508 individuals with BD from a specialized unit. Lifetime SUDs were defined according to the DSM criteria. Random forest (RF) models were trained to identify the presence of (i) any (SUD) in the total sample, (ii) alcohol use disorder (AUD) in the total sample, (iii) AUD co-occurrence with at least another SUD in the total sample (AUD+SUD), and (iv) any other SUD among BD patients with AUD. Relevant variables selected by the RFs were considered as independent variables in multiple logistic regressions to predict SUDs, adjusting for relevant covariates. AUD+SUD could be predicted in BD at an individual level with a sensitivity of 75% and a specificity of 75%. The presence of AUD+SUD was positively associated with having hypomania as the first affective episode (OR = 4.34 95% CI = 1.42-13.31), and the presence of hetero-aggressive behavior (OR = 3.15 95% CI = 1.48-6.74). Machine-learning models might be useful instruments to predict the risk of SUD in BD, but their efficacy is limited when considering socio-demographic or clinical factors alone.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/jcm11143935-
dc.relation.ispartofJournal of Clinical Medicine, 2022, vol. 11, num. 14, p. 3935-
dc.relation.urihttps://doi.org/10.3390/jcm11143935-
dc.rightscc-by (c) Oliva, Vincenzo et al., 2022-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Medicina)-
dc.subject.classificationAlcoholisme-
dc.subject.classificationTrastorn bipolar-
dc.subject.classificationCànnabis-
dc.subject.classificationDrogoaddicció-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationAbús de substàncies-
dc.subject.otherAlcoholism-
dc.subject.otherManic-depressive illness-
dc.subject.otherCannabis-
dc.subject.otherDrug addiction-
dc.subject.otherMachine learning-
dc.subject.otherSubstance abuse-
dc.titleMachine Learning Prediction of Comorbid Substance Use Disorders among People with Bipolar Disorder-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec724241-
dc.date.updated2023-03-23T13:25:06Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid35887699-
Appears in Collections:Articles publicats en revistes (Medicina)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Institut de Neurociències (UBNeuro))

Files in This Item:
File Description SizeFormat 
724241.pdf794.74 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons