Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/196784
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJaneras Casanova, Marc-
dc.contributor.authorLantada, Nieves-
dc.contributor.authorNúñez-Andrés, M.A.-
dc.contributor.authorHantz, Didier-
dc.contributor.authorPedraza, Oriol-
dc.contributor.authorCornejo, Rocio-
dc.contributor.authorGuinau Sellés, Marta-
dc.contributor.authorGarcía Sellés, David-
dc.contributor.authorBlanco Núñez, Laura-
dc.contributor.authorGili, Josep A.-
dc.contributor.authorPalau, Joan-
dc.date.accessioned2023-04-14T09:53:16Z-
dc.date.available2023-04-14T09:53:16Z-
dc.date.issued2023-04-09-
dc.identifier.issn2072-4292-
dc.identifier.urihttp://hdl.handle.net/2445/196784-
dc.description.abstractQuantitative hazard analysis of rockfalls is a fundamental tool for sustainable risk management, even more so in places where the preservation of natural heritage and people's safety must find the right balance. The first step consists in determining the magnitude-frequency relationship, which corresponds to the apparently simple question: how big and how often will a rockfall be detached from anywhere in the cliff? However, there is usually only scarce data on past activity from which to derive a quantitative answer. Methods are proposed to optimize the exploitation of multi-source inventories, introducing sampling extent as a main attribute for the analysis. This work explores the maximum possible synergy between data sources as different as traditional inventories of observed events and current remote sensing techniques. Both information sources may converge, providing complementary results in the magnitude-frequency relationship, taking advantage of each strength that overcomes the correspondent weakness. Results allow characterizing rockfall detachment hazardous conditions and reveal many of the underlying conditioning factors, which are analyzed in this paper. High variability of the hazard over time and space has been found, with strong dependencies on influential external factors. Therefore, it will be necessary to give the appropriate reading to the magnitude-frequency scenarios, depending on the application of risk management tools (e.g., hazard zoning, quantitative risk analysis, or actions that bring us closer to its forecast). In this sense, some criteria and proxies for hazard assessment are proposed in the paper.-
dc.format.extent36 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/rs15081981-
dc.relation.ispartofRemote Sensing, 2023, vol. 15(8), num. 1981, p. 1-36-
dc.relation.urihttps://doi.org/10.3390/rs15081981-
dc.rightscc-by (c) Janeras Casanova, Marc et al., 2023-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Dinàmica de la Terra i l'Oceà)-
dc.subject.classificationEsllavissades-
dc.subject.classificationMoviments de massa-
dc.subject.classificationVigilància electrònica-
dc.subject.otherLandslides-
dc.subject.otherMass-wasting-
dc.subject.otherElectronic surveillance-
dc.titleRockfall Magnitude-Frequency Relationship Based on Multi-Source Data from Monitoring and Inventory-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec733262-
dc.date.updated2023-04-14T09:53:16Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
733262.pdf18.86 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons