Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/196908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMargalef Marti, Rosanna-
dc.contributor.authorSebilo, Mathieu-
dc.contributor.authorDe Chanvalon, Aubin Thibault-
dc.contributor.authorAnschutz, Pierre-
dc.contributor.authorCharbonnier, Céline-
dc.contributor.authorLauga, Béatrice-
dc.contributor.authorGonzalez-Alvarez, Ivan-
dc.contributor.authorTessier, Emmanuel-
dc.contributor.authorAmouroux, David-
dc.date.accessioned2023-04-19T06:51:02Z-
dc.date.available2023-04-19T06:51:02Z-
dc.date.issued2022-12-30-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/2445/196908-
dc.description.abstractThe sulphur cycle has a key role on the fate of nutrients through its several interconnected reactions. Although sulphur cycling in aquatic ecosystems has been thoroughly studied since the early 70's, its characterisation in saline endorheic lakes still deserves further exploration. Gallocanta Lake (NE Spain) is an ephemeral saline inland lake whose main sulphate source is found on the lake bed minerals and leads to dissolved sulphate concentrations higher than those of seawater. An integrative study including geochemical and isotopic characterization of surface water, porewater and sediment has been performed to address how sulphur cycling is constrained by the geological background. In freshwater and marine environments, sulphate concentration decreases with depth are commonly associated with bacterial sulphate reduction (BSR). However, in Gallocanta Lake sulphate concentrations in porewater increase from 60 mM at the water-sediment interface to 230 mM at 25 cm depth. This extreme increase could be caused by dissolution of the sulphate rich mineral epsomite (MgSO4·7H2O). Sulphur isotopic data was used to validate this hypothesis and demonstrate the occurrence of BSR near the water-sediment interface. This dynamic prevents methane production and release from the anoxic sediment, which is advantageous in the current context of global warming. These results underline that geological context should be considered in future biogeochemical studies of inland lakes with higher potential availability of electron acceptors in the lake bed compared to the water column.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-022-27355-9-
dc.relation.ispartofScientific Reports, 2022, vol. 13, num. 3032-
dc.relation.urihttps://doi.org/10.1038/s41598-022-27355-9-
dc.rightscc-by (c) Margalef Marti, Rosanna et al., 2022-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)-
dc.subject.classificationBiogeoquímica-
dc.subject.classificationIsòtops-
dc.subject.classificationSulfats-
dc.subject.classificationEcologia dels llacs-
dc.subject.otherBiogeochemistry-
dc.subject.otherIsotopes-
dc.subject.otherSulfates-
dc.subject.otherLake ecology-
dc.titleUpside down sulphate dynamics in a saline inland lake-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec730346-
dc.date.updated2023-04-19T06:51:03Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Mineralogia, Petrologia i Geologia Aplicada)

Files in This Item:
File Description SizeFormat 
730346.pdf1.29 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons