Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/198362
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Vieiro Yanes, Arturo | - |
dc.contributor.advisor | Gonchenko, Marina | - |
dc.contributor.author | Arévalo Soler, Pol | - |
dc.date.accessioned | 2023-05-23T09:06:41Z | - |
dc.date.available | 2023-05-23T09:06:41Z | - |
dc.date.issued | 2023-01-24 | - |
dc.identifier.uri | https://hdl.handle.net/2445/198362 | - |
dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Arturo Vieiro Yanes i Marina Gonchenko | ca |
dc.description.abstract | [en] In this work we study the Lorenz system and its application in the field of cryptography. Initially, from a theoretical point of view, we describe the most important properties and basic concepts of the system, in particular, we study the symmetry of the system, the invariance of the $z$ axis, the existence of a global attractor, the stability of the equilibrium points, bifurcations and we present basic notations of chaos theory in order to understand the main features of the behavior of the Lorenz system and its strange attractor. To do this, we use analytical and numerical tools. Later, from a more practical point of view, we present the synchronization of chaos that will allow us to introduce the concept of chaotic cryptography. Finally, we implement algorithms (in C) to encrypt and decrypt signals using the Lorenz system and analyze the dependence that exists between the error committed when recovering the original signal and the same signal. | ca |
dc.format.extent | 52 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | cat | ca |
dc.rights | cc-by-nc-nd (c) Pol Arévalo Soler, 2022 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | - |
dc.subject.classification | Corbes el·líptiques | ca |
dc.subject.classification | Treballs de fi de grau | - |
dc.subject.classification | Varietats abelianes | ca |
dc.subject.classification | Funcions zeta | ca |
dc.subject.classification | Xifratge (Informàtica) | ca |
dc.subject.other | Elliptic curves | en |
dc.subject.other | Bachelor's theses | - |
dc.subject.other | Abelian varieties | en |
dc.subject.other | Zeta functions | en |
dc.subject.other | Data encryption (Computer science) | en |
dc.title | Sistema de Lorenz i criptosistemes caòtics | ca |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_arevalo_soler_pol.pdf | Memòria | 4.77 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License