Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/198463
Title: | La corba de Szegő |
Author: | Dalmau Ribas, Emma |
Director/Tutor: | Massaneda Clares, Francesc Xavier |
Keywords: | Teoria geomètrica de funcions Treballs de fi de grau Funcions enteres Geometric function theory Bachelor's thesis Entire functions |
Issue Date: | 21-Jan-2023 |
Abstract: | [en] Around the year 1924, Hungarian mathematician Gábor Szegő found that the zeros of the $n$th partial sums of the exponential series, rescaled by $n$, accumulate on the curve $S=\left\{z \in \overline{\mathbb{D}}:\left|e^{1-z} z\right|=1\right\}$. Not only that, but he showed that this zeros are uniformly distributed around $S$ according to the variation of the argument of the entire function $h(z)=e^{1-z} z$. In this thesis we show these results and other later discoveries that specify the velocity of convergence and the distance from the zeros to $S$. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Francesc Xavier Massaneda Clares |
URI: | http://hdl.handle.net/2445/198463 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_dalmau_ribas_emma.pdf | Memòria | 874.35 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License