Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/198841
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCascante, Ma. Carme (Maria Carme)-
dc.contributor.authorPalacios Torrell, Roger-
dc.date.accessioned2023-06-02T09:59:19Z-
dc.date.available2023-06-02T09:59:19Z-
dc.date.issued2023-01-24-
dc.identifier.urihttps://hdl.handle.net/2445/198841-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Ma. Carme Cascanteca
dc.description.abstract[en] The Maximum Modulus Principle, which is one of the most important results in complex analysis, states that a holomorphic function defined on a bounded domain of $\mathbb{C}$, takes its maximum value at some point from the domain's boundary. Hence, the objective of this work is to introduce and apply the Phragmén-Lindelöf method in order to extend the conclusions given by the Maximum Modulus Principle to unbounded domains. Furthermore, this method will be used to see some applications such as: the Hadamard Three Lines Theorem, which provides good enough bounds for holomorphic functions on vertical strips; the Riesz-Thorin Interpolation Theorem, which establishes that a linear operator between measurable function spaces is bound in certain Lebesgue spaces $L^p$; and the Hardy's Uncertainty Principle, which claims that a measurable function and its Fourier transform cannot simultaneously have compact support, unless they both are identically zero.ca
dc.format.extent43 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Roger Palacios Torrell, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationTeoria geomètrica de funcionsca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationOperadors linealsca
dc.subject.classificationAnàlisi harmònicaca
dc.subject.otherGeometric function theoryen
dc.subject.otherBachelor's theses-
dc.subject.otherLinear operatorsen
dc.subject.otherHarmonic analysisen
dc.titleEl mètode de Phragmén-Lindelöf i aplicacions: teorema de Riesz-Thorin i d’incertesa de Hardyca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_palacios_torrell_roger.pdfMemòria688.26 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons