Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/199981
Full metadata record
DC FieldValueLanguage
dc.contributor.authorElena Jiménez, Georgina-
dc.contributor.authorFernàndez Martínez, Jordi-
dc.contributor.authorZacchini, Massimo-
dc.contributor.authorMoret, Assumpció-
dc.contributor.authorFleck, Isabel-
dc.date.accessioned2023-06-27T14:14:45Z-
dc.date.available2023-06-27T14:14:45Z-
dc.date.issued2014-
dc.identifier.issn1927-0461-
dc.identifier.urihttp://hdl.handle.net/2445/199981-
dc.description.abstractThe selection of resistant genotypes is the most appropriate approach in the prevention of the reduction of biomass and mortality caused by rust infection in poplar plantations. Thus, it is pertinent that we improve our understanding of the consequences that this fungal disease has on leaf physiology. Here, we studied the susceptibility to Melampsora rust in three different poplar clones of commercial interest: Lux clone - Populus deltoides Batr. (cottonwood) and Luisa Avanzo and Adige clones - both Populus × canadensis Mönch. The most susceptible clone to the infection was L. Avanzo whereas Lux and especially Adige were only slightly affected. The propagation of the disease was very rapid in L. Avanzo; their leaves showed a high incidence and severity of the disease in early and advanced stages of infection as was clearly evidenced by the degree of infection. Infected leaves of L. Avanzo were shown to have drought impaired water relations during summer as reflected by the marked decline in the relative water content (RWC). Chlorophyll fluorescence imaging revealed heterogeneity of the effect of the pathogen in the leaves, and areas with pustules showed low maximum quantum yield (Fv/Fm) and PSII quantum yield (?PSII) values, indicative of strong photoinhibition. In L. Avanzo, with a greater pustule density, rust provoked a decline in whole leaf photochemistry as indicated by Fv/Fm and photochemical reflectance index (PRI) results. Leaf structural parameters were not affected by the disease but results in L. Avanzo and Lux showed higher leaf mass per area (LMA) and higher leaf density (D) indicating an adaptation to increasing summer drought. In all clones, the effect of the pathogen was reflected in lower leaf chlorophyll content.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherCanadian Center of Science and Education-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.5539/jps.v3n2p1-
dc.relation.ispartofJournal of Plant Studies, 2014, vol. 3, num. 2, p. 1-12-
dc.relation.urihttps://doi.org/10.5539/jps.v3n2p1-
dc.rightscc-by (c) Elena Jiménez, Georgina et al., 2014-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)-
dc.subject.classificationClorofil·la-
dc.subject.classificationPlantacions-
dc.subject.classificationBasidiomicets-
dc.subject.otherChlorophyll-
dc.subject.otherPlantations-
dc.subject.otherBasidiomycetes-
dc.titleSusceptibility to Melampsora leaf rust of poplar clones from diverse genetic backgrounds: effects on photochemistry and water relations-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec736199-
dc.date.updated2023-06-27T14:14:45Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)

Files in This Item:
File Description SizeFormat 
736199.pdf1.04 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons