Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/200325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCascante, Ma. Carme (Maria Carme)-
dc.contributor.authorFàbrega Casamitjana, Joan-
dc.date.accessioned2023-07-05T08:28:04Z-
dc.date.available2023-07-05T08:28:04Z-
dc.date.issued2023-06-30-
dc.identifier.issn0002-9939-
dc.identifier.urihttps://hdl.handle.net/2445/200325-
dc.description.abstractIn this work we characterize the boundedness, compactness and membership in the Schatten class of small Hankel operators on generalized weighted Fock spaces $F^{p,\ell}_\alpha(\omega)$ associated to an $\mathcal{A}^\ell_p$ weight $\omega$, for $1<p<\infty$, $\ell\ge1$, and $\alpha>0$.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Mathematical Society (AMS)-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1090/proc/16534-
dc.relation.ispartofProceedings of the American Mathematical Society, 2023-
dc.relation.urihttps://doi.org/10.1090/proc/16534-
dc.rightscc-by-nc-nd (c) American Mathematical Society (AMS), 2023-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationEquacions integrals-
dc.subject.classificationOperadors lineals-
dc.subject.classificationFuncions de variables complexes-
dc.subject.classificationAnàlisi harmònica-
dc.subject.otherIntegral equations-
dc.subject.otherLinear operators-
dc.subject.otherFunctions of complex variables-
dc.subject.otherHarmonic analysis-
dc.titleSmall Hankel operators on generalized weighted Fock spaces-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec737090-
dc.date.updated2023-07-05T08:28:04Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
737090.pdf433.26 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons