Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/200513
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCos Aguilera, Ignasi-
dc.contributor.authorDi Croce, Luca Eric-
dc.date.accessioned2023-07-11T09:04:24Z-
dc.date.available2023-07-11T09:04:24Z-
dc.date.issued2023-06-13-
dc.identifier.urihttp://hdl.handle.net/2445/200513-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Ignasi Cos Aguileraca
dc.description.abstract[en] The aim of this project is to establish a methodology to quantify the extent to which different brainwave signatures vary in their past data retention, and to determine how other factors interact with these variations, using previously obtained EEG recordings. To achieve this, we quantified the amount of past values that strongly influence future values for each brainwave signature throughout different EEG time series. Specifically, we calculated the number of lags required for a univariate autoregressive computational model to predict a set of brainwave time-series with an error (RMSE) below a preset threshold. In this fashion, we could establish that a similar number of lags were required based on the brainwave signatures (alpha, beta, gamma, or unfiltered) throughout the different conditions of activities and the different EEG sets, with the number of lags required being around 3, 4, and 6 for alpha, beta, and gamma brainwaves, respectively, when trying to achieve a minimum RMSE value of 0.001. This covariation is displayed again when using a different sets of threshold RMSE values, with gamma consistently having a greater dependency to past data, and alpha a lesser one. Our results indicate that brainwave signatures that are more related to active states can use past data for a longer period of time than brainwave signatures related to relaxed states. Furthermore, they suggest that active-state brainwaves show a more dilated time perception than their relaxed counterparts. In future studies, this methodology may help to establish a technique to objectively analyze time perception variation through EEG readings.ca
dc.format.extent54 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Luca Eric Di Croce, 2023-
dc.rightscodi: GPL (c) Luca Eric Di Croce, 2023-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationElectroencefalografiaca
dc.subject.classificationPercepció del tempsca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationProcessament de dadesca
dc.subject.classificationNeurociència cognitivaca
dc.subject.otherElectroencephalographyen
dc.subject.otherTime perceptionen
dc.subject.otherComputer softwareen
dc.subject.otherData processingen
dc.subject.otherCognitive neuroscienceen
dc.subject.otherBachelor's thesesen
dc.titleHow do our brainwaves perceive the passage of time? Quantifying neural correlates of time during a rhythm performance taskca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
tfg_di_croce_luca_eric.pdfMemòria4.16 MBAdobe PDFView/Open
codi.zipCodi font2.19 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons