Please use this identifier to cite or link to this item:
Title: Endothelial deletion of Wt1 disrupts coronary angiogenesis and myocardium development
Author: Ramiro Pareta, Marina
Müller Sánchez, Claudia Alejandra
Portella-Fortuny, Rosa
Soler Botija, Carolina
Torres Cano, Alejo
Esteve Codina, Anna
Bayés Genís, Antoni
Reina del Pozo, Manuel
Soriano Zaragoza, Francesc X. (Francesc Xavier)
Montañez, Eloi
Martínez Estrada, Ofelia María
Keywords: Endoteli
Proliferació cel·lular
Ratolins (Animals de laboratori)
Cell proliferation
Mice (Laboratory animals)
Issue Date: 27-Mar-2023
Publisher: The Company of Biologists
Abstract: Wt1 encodes a zinc finger protein that is crucial for epicardium development. Although WT1 is also expressed in coronary endothelial cells (ECs), the abnormal heart development observed in Wt1 knockout mice is mainly attributed to its functions in the epicardium. Here, we have generated an inducible endothelial-specific Wt1 knockout mouse model (Wt1KOΔEC). Deletion of Wt1 in ECs during coronary plexus formation impaired coronary blood vessels and myocardium development. RNA-Seq analysis of coronary ECs from Wt1KOΔEC mice demonstrated that deletion of Wt1 exerted a major impact on the molecular signature of coronary ECs and modified the expression of several genes that are dynamically modulated over the course of coronary EC development. Many of these differentially expressed genes are involved in cell proliferation, migration and differentiation of coronary ECs; consequently, the aforementioned processes were affected in Wt1KOΔEC mice. The requirement of WT1 in coronary ECs goes beyond the initial formation of the coronary plexus, as its later deletion results in defects in coronary artery formation. Through the characterization of these Wt1KOΔEC mouse models, we show that the deletion of Wt1 in ECs disrupts physiological blood vessel formation.
Note: Reproducció del document publicat a:
It is part of: Development, 2023, vol. 150, num. 6
Related resource:
ISSN: 0950-1991
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)

Files in This Item:
File Description SizeFormat 
733201.pdf13.57 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.