Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRadeva, Petia-
dc.contributor.advisorRodrigues Sepúlveda Marques, Ricardo Jorge-
dc.contributor.authorPuriy Puriy, Nazar-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Petia Radeva i Ricardo Jorge Rodrigues Sepúlveda Marquesca
dc.description.abstract[en] The field of 3D generation, a rapidly emerging domain within generative AI, holds immense potential for various applications in fields such as architecture, product design, marketing, entertainment, and even in the novel realm of virtual reality. Enhancing 3D technologies bears significant utility in fostering society development and serves as a captivating and intellectually stimulating field of study, offering intriguing challenges and opportunities for innovative advancements. In this dissertation, we introduce DreamText, an innovative Image to 3D generative model that harnesses text descriptors as an intermediate step for 3D reconstruction. Our proposed method effectively learns to describe objects within images, capturing crucial object details while disregarding extraneous contextual information such as lighting, point of view, or specific arrangements. This learned information serves as the foundation for generating compelling and novel views of the object, subsequently facilitating the creation of a comprehensive and accurate 3D reconstruction. Remarkably, our approach achieves high quality results, surpassing current state-of-the-art methodologies like RealFusion (CVPR2023)[1] in several test cases. Concrete evidence of our results can be observed in the following link. Furthermore, we present FitFusion, which leverages the knowledge of a pretrained image generative model, Stable Diffusion, to train a Neural Radiance Field capable of generating 3D models when provided with image data during training. This concept stems from a comprehensive analysis and understanding of a previous model called Stable DreamFusion[2], combined with meticulous parameter tuning that culminates in improved outcomes. This project entails extensive mathematical and experimental analysis of cutting-edge models, encompassing a comprehensive understanding of their intricate
dc.format.extent103 p.-
dc.rightsmemòria: cc-nc-nd (c) Nazar Puriy Puriy, 2023-
dc.rightscodi: Apache (c) Nazar Puriy Puriy, 2023-
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationVisualització tridimensionalca
dc.subject.classificationIntel·ligència artificialca
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationAprenentatge automàticca
dc.subject.otherThree-dimensional display systemsen
dc.subject.otherArtificial intelligenceen
dc.subject.otherComputer softwareen
dc.subject.otherMachine learningen
dc.subject.otherBachelor's thesesen
dc.titleDreamText: Harnessing text descriptions as an intermediate step for 3D reconstructionca
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
tfg_puriy_puriy_nazar.pdfMemòria81.41 MBAdobe PDFView/Open
DreamText.zipCodi font3.6 GBzipView/Open

This item is licensed under a Creative Commons License Creative Commons