Por favor, use este identificador para citar o enlazar este documento: https://hdl.handle.net/2445/201756
Título: Covid-like epidemic spreading on networks
Autor: Pérez Pérez, Arnau
Director/Tutor: Boguñá, Marián
Materia: COVID-19
Models matemàtics
Treballs de fi de grau
COVID-19
Mathematical models
Bachelor's theses
Fecha de publicación: jun-2023
Resumen: The COVID-19 pandemic has had significant impacts on health, economies, and societies. Mathematical models in networks play a crucial role in understanding and mitigating the spread of infectious diseases. This study develops a customized SIR model to simulate the spread of COVID-19, incorporating non-pharmaceutical interventions (NPIs) to limit transmission. Self-protection and mobility restrictions are complementary, allowing hygiene measures to serve as an alternative to strict mobility limitations. Gillespie algorithm is used to simulate infection and recovery events. To combat the late response in the first wave of infection in Spain, the study explores different lockdown strategies, including Intense and Multi-phase approaches. Intense lockdowns effectively reduce cases, but may be challenging to sustain due to population fatigue with prolonged restrictions. On the other hand, Multi-phase lockdowns have limited impact on final case numbers but aid in the recovery of the health system between waves, minimizing the impact on the economy, fatalities and people’s mental health.
Nota: Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutor: Marián Boguná Espinal
URI: https://hdl.handle.net/2445/201756
Aparece en las colecciones:Treballs Finals de Grau (TFG) - Física

Archivos de este documento:
Archivo Descripción DimensionesFormato 
PÉREZ PÉREZ ARNAU_7934072.pdf837.84 kBAdobe PDFMostrar/Abrir


Este documento está sujeto a una Licencia Creative Commons Creative Commons