Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/201924
Title: AMPK is a mechano-metabolic sensor linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration
Author: Crosas Molist, Eva
Graziani, Vittoria
Maiques, Oscar
Pandya, Pahini
Monger, Joanne
Samain, Remi
George, Samantha L.
Malik, Saba
Salise, Jerrine
Morales, Valle
Guennec, Adrien Le
Atkinson, R. Andrew
Marti, Rosa M.
Matias-Guiu, Xavier
Charras, Guillaume
Conte, Maria R.
Elosegui Artola, Alberto
Holt, Mark
Sanz Moreno, Victoria
Keywords: Fisiologia cel·lular
Metabolisme cel·lular
Fosforilació
Cell physiology
Cell metabolism
Phosphorylation
Issue Date: 22-May-2023
Publisher: Springer Nature Limited
Abstract: Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton. Cell metabolism must adapt to the energy needs of migrating cells. This study finds that fast amoeboid migrating cells harbor high AMPK activity, which controls both mitochondrial dynamics and cytoskeletal remodeling, enabling reduced energy needs.
Note: Reproducció del document publicat a: https://doi.org/10.1038/s41467-023-38292-0
It is part of: Nature Communications, 2023, vol. 14, num. 1
URI: http://hdl.handle.net/2445/201924
Related resource: https://doi.org/10.1038/s41467-023-38292-0
ISSN: 2041-1723
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
s41467-023-38292-0.pdf6.63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons