Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/202030
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSalamó Llorente, Maria-
dc.contributor.authorXing, Rong-
dc.date.accessioned2023-09-19T09:39:06Z-
dc.date.available2023-09-19T09:39:06Z-
dc.date.issued2023-06-10-
dc.identifier.urihttps://hdl.handle.net/2445/202030-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Maria Salamó Llorenteca
dc.description.abstract[en] With the rapid advancement of communication technology, smartphone usage, and sophisticated algorithms, social media has become an integral and inseparable part of modern society. Consequently, the prevalence of sexist content on these platforms has emerged as a significant and far-reaching issue. This form of online harassment not only perpetuates gender inequalities but also poses significant psychological and emotional harm to individuals targeted by such content. Thus, it is imperative to address this problem and take proactive measures to mitigate its impact. The main goal of this work is to study, identify and analyze the process of detection of sexist content through the application of natural language processing techniques. The study utilizes two datasets from the EXIST competition, a shared task of sEXism Identification in Social neTworks from IberLeF 2021 and CLEF 2023. Five state-of-the-art language models, based on Transformers and Deep Learning, are trained and validated for subsequent comparison. The primary objective is to identify instances of online sexism and determine the optimal framework for each task, which accurately reflects real-world scenarios.ca
dc.format.extent84 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Rong Xing, 2023-
dc.rightscodi: GPL (c) Rong Xing, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationXarxes socials en líniaca
dc.subject.classificationTractament del llenguatge natural (Informàtica)ca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationDiscriminació sexualca
dc.subject.otherOnline social networksen
dc.subject.otherNatural language processing (Computer science)en
dc.subject.otherComputer softwareen
dc.subject.otherMachine learningen
dc.subject.otherSex discriminationen
dc.subject.otherBachelor's thesesen
dc.titleIdentification of sexism on social mediaca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
tfg_xing_rong.pdfMemòria4.27 MBAdobe PDFView/Open
codi.zipCodi font15.21 MBzipView/Open


This item is licensed under a Creative Commons License Creative Commons